
Editorial: Fuzzy Models − What Are They, and Why? 
(J.C. Bezdek, IEEE Transactions on Fuzzy Systems, Vol. 1, No. 1, February 1993 − Edited by P.D.) 

 

Fuzzy sets are a generalization of conventional set theory that were introduced by Zadeh in 1965 as a mathematical 
way to represent vagueness in everyday life [1]. The basic idea of fuzzy sets is easy to grasp. Suppose, as you approach a 
red light, you must advise a driving student when to apply the brakes. Would you say, "Begin braking 74 feet from the 
crosswalk"? Or would your advice be more like, "Apply the brakes pretty soon"? The latter, of course; the former 
instruction is too precise to be implemented. This illustrates that precision may be quite useless, while vague directions 
can be interpreted and acted upon. Everyday language is one example of ways vagueness is used and propagated. Children 
quickly learn how to interpret and implement fuzzy instructions (“go to bed about 10”). We all assimilate and use (act on) 
fuzzy data, vague rules, and imprecise information, just as we are able to make decisions about situations which seem to 
be governed by an element of chance. Accordingly, computational models of real systems should also be able to recognize, 
represent, manipulate, interpret, and use (act on) both fuzzy and statistical uncertainties. 

Fuzzy interpretations of data structures are a very natural and intuitively plausible way to formulate and solve various 
problems. Conventional (crisp) sets contain objects that satisfy precise properties required for membership. The set of 
numbers H from 6 to 8 is crisp; we write H = {r ∈ ℜ | 6 ≤ r ≤ 8}. Equivalently, H is described by its membership (or 
characteristic, or indicator) function (MF), mH : ℜ → {0,1}, defined as  

The crisp set H and the graph of mH are shown in the left half of Fig. 1. Every real number (r) either is in H or is not. 
Since mH maps all real numbers r ∈ ℜ onto the two points (0,1), crisp sets correspond to two-valued logic: is or isn't, on 
or off, black or white, 1 or 0. In logic, values of mH are called truth values with reference to the question, "Is r in H?" The 
answer is yes if and only if mH(r) = 1; otherwise, no.  

Consider next the set F of real numbers that are close to 7. Since the property "close to 7" is fuzzy, there is not a 
unique membership function for F. Rather, the modeler must decide, based on the potential application and properties 
desired for F, what mF should be. Properties that might seem plausible for this F include (i) normality (MF(7) = 1), (ii) 
monotonicity (the closer r is to 7, the closer mF(r) is to 1, and conversely), and (iii) symmetry (numbers equally far left 
and right of 7 should have equal memberships). Given these intuitive constraints, either of the functions shown in the 
right half of Fig. 1 might be a useful representation of F. mF1 is discrete (the staircase graph), while mF2 is continuous but 
not smooth (the triangle graph). One can easily construct a MF for F so that every number has some positive membership 
in F, but we would not expect numbers "far from 7," 20 000 987 for example, to have much! One of the biggest 
differences between crisp and fuzzy sets is that the former always have unique MFs, whereas every fuzzy set has an 
infinite number of MFs that may represent it. This is at once both a weakness and a strength; uniqueness is sacrificed, but 
this gives a concomitant gain in terms of flexibility, enabling fuzzy models to be "adjusted" for maximum utility in a 
given situation. 

In conventional set theory, sets of real objects, such as the numbers in H, are equivalent to, and isomorphically 
described by, a unique membership function such as mH. However, there is no set-theory equivalent of "real objects" 
corresponding to mF. Fuzzy sets are always (and only) functions, from a "universe of objects," say X, into [0,1]. This is 
depicted in Fig. 2, which illustrates that the fuzzy set is the function mF that carries X into [0,1]. As defined, every 
function m : X → [0,1] is a fuzzy set. While this is true in a formal mathematical sense, many functions that qualify on 
this ground cannot be suitably interpreted as realizations of a conceptual fuzzy set. In other words, functions that map X 
into the unit interval may be fuzzy sets, but become fuzzy sets when, and only when, they match some intuitively plausible 

semantic description of imprecise properties of 
the objects in X. 

One of the first questions asked about this 
scheme, and the one that is still asked most 
often, concerns the relationship of fuzziness 
to probability . Are fuzzy sets just a clever 
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disguise for statistical models? Well, in a word, NO. Perhaps an example will help.  
Example 1: Let the set of all liquids be the universe of objects, and let fuzzy subset L = {all potable (="suitable for 
drinking") liquids}. Suppose you had been in the desert for a week without drink and you came upon two bottles, A and B. 
You are told that the (fuzzy) membership of the liquid in A to L is 0.9 and also that the probability that the liquid in B 
belongs to L is 0.9. In other words, A contains a liquid that is potable with degree of membership 0.9, while B contains a 
liquid that is potable with probability 0.9. Confronted with this pair of bottles and given that you must drink from the one 
that you choose, which would you choose to drink from first? Why? Moreover, after an observation is made regarding the 
content of both bottles what are the (possible) values for membership and probability? [The answers to this "riddle" will 
be discussed in class]. 

Another common misunderstanding about fuzzy models over the years has been that they were offered as replacements 
for crisp (or probabilistic) models. To expand on this, first note from Figs. 1 and 2 that every crisp set is fuzzy, but not 
conversely. Most schemes that use the idea of fuzziness use it in this sense of embedding; that is, we work at preserving 
the conventional structure, and letting it dominate the output whenever it can, or whenever it must. Another example will 
illustrate this idea. 
Example 2: Consider the plight of early mathematicians, who knew that the Taylor series for the real (bell-shaped) 
function f(x) = 1 / (l + x2) was divergent at x = ± l but could not understand why, especially since f is differentiable 
infinitely often at these two points. As is common knowledge for any student of complex variables nowadays, the complex 
function f(z) = 1 / (l + z2) has poles at z = ± i, two purely imaginary numbers. Thus, the complex function, which is an 
embedding of its real antecedent, cannot have a convergent power series expansion anywhere on the boundary of the unit 
disk in the plane; in particular at z = ± 0i ± 1, i.e., at the real numbers x = ± 1. This exemplifies a general principle in 
mathematical modeling: given a real (seemingly insoluble) problem; enlarge the space, and look for a solution in some 
"imaginary" superset of the real problem; finally, specialize the "imaginary" solution to the original real constraints. 

In Example 2 we spoke of "complexifying" the function f by embedding the real numbers in the complex plane, 
followed by "decomplexification" of the more general result to solve the original problem. Most fuzzy models follow a 
very similar pattern. Real problems that exhibit non-statistical uncertainty are first "fuzzified," some type of analysis is 
done on the larger problem, and then the results are specialized back to the original problem. In Example 2 we might call 
the return to the real line decomplexifying the function; in fuzzy models, this part of the procedure has come to be known 
as defuzzification. Defuzzification is usually necessary, of course, because even though we instruct a student to "apply the 
brakes pretty soon," in fact, the brake pedal must be operated crisply, at some real time. In other words, we cannot 
admonish a motor to "speed up a little," even if this instruction comes from a fuzzy controller we must alter its voltage by 
a specific amount. Thus defuzzification is both natural and necessary. Example 2 illustrates that this is hardly an idea that 
is novel; instead, we should regard it as a device that is useful.  
Example 3: As a last, and perhaps more concrete, example about the use of fuzzy models, consider the system shown in 
Fig. 3, which depicts a simple inverted pendulum free to rotate in the plane of the figure on a pivot attached to the cart. 
The control problem is to keep the pendulum vertical at all times by applying a restoring force (control signal) F(t) to the 
cart at some discrete times (t) in response to changes in both the linear and angular position and velocity of the pendulum. 
This problem can be formulated many ways. In one of the simpler versions used in conventional control theory, 
linearization of the equations of motion results in a model of the system whose stability characteristics are determined by 
examination of the real parts of the eigenvalues {λi} of a 4 × 4 matrix of system constants. The lower track in Fig. 3 
represents this case. It is well known that the pendulum can be stabilized by requiring Re(λi) < 0, as shown in the middle 
of the lower track. This procedure is so commonplace in control engineering that most designers don't even think about 
the use of imaginary numbers to solve real problems, but it is clear that this process is exactly the same as was illustrated 
in Example 2 − a real problem is solved by temporarily passing to a larger, imaginary setting, analyzing the situation in 
the superset, and then specializing the 
result to get the desired answer.  

The upper track in Fig. 3 depicts an 
alternative solution to this control 
problem that is based on fuzzy sets. This 
approach to stabilization of the pendulum 
is also well known, and yields a solution 
that in some ways is much better; e.g., 
the fuzzy controller is much less sensitive 
to changes in parameters such as the 
length and mass of the pendulum [2]. 
Note again the embedding principle: 
fuzzify, solve, defuzzify, control. The 
point of Example 3? Fuzzy models aren't 
really that different from more familiar 
ones. Sometimes they work better, and 
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sometimes not. This is really the only 
criterion that should be used to judge any 
model, and there is much evidence 
nowadays that fuzzy approaches to real 
problems are often a good alternative to 
more familiar schemes. This is the point to 
which our discussion now turns. 

Lets now discuss a little bit about the 
history of fuzzy sets. The enormous success 
of commercial applications which are at 
least partially dependent on fuzzy 
technologies fielded (in the main) by 
Japanese companies has led to a surge of 
curiosity about the utility of fuzzy logic for 
scientific and engineering applications. 
Over the last five or ten years, fuzzy 
models have supplanted more conventional 
technologies in many scientific 

applications and engineering systems, especially in control systems and pattern recognition. A recent Newsweek article 
indicates that the Japanese now hold thousands of patents on fuzzy devices used in applications as diverse as washing 
machines, TV camcorders, air conditioners, palm-top computers, vacuum cleaners, ship navigators, subway train 
controllers, and automobile transmissions [3]. It is this wealth of deployed, successful applications of fuzzy technology 
that is, in the main, responsible for current interest in the subject area.  

Since 1965, many authors have generalized various parts of subdisciplines in mathematics, science, and engineering to 
include fuzzy cases. However, interest in fuzzy models was not really very widespread until their utility in fielded 
applications became apparent. The reasons for this delay in interest are many, but perhaps the most accurate explanation 
lies with the salient facts underlying the development of any new technology, which is succintly captured in Fig. 4. The 
horizontal axis of Fig. 4 is time, and the vertical axis is expectation − whose expectation? Well, usually, of the people who 
pay for development of the technology; but here I encourage you to interpret this axis in a much broader sense, for utility 
is, of course, in the eye of the user. The crucial part of Fig. 4 is the asymptote of reality, which bounds the delivery of the 
technology to a much lower expected value than early users project for it. The years shown along the time axis pertain to 
fuzzy models, and are, of course, approximate at best (with the exception of the initial one). When you look at this figure, 
you may enjoy deleting these years, and substituting your favorite new technology for the one illustrated. Each technology 
has its own evolution, and not all of them follow the pattern suggested by Fig. 4 (but you may be surprised to see how 
many do!). For example, try putting dates and identifying the people and events associated with, say, computational 
neural networks (which has an atypical, bimodal graph!); or artificial intelligence; or fractals; or complex numbers; and 
so on.  Every new technology begins with naive euphoria -- its inventor(s) are usually submersed in the ideas themselves; 
it is their immediate colleagues that experience most of the wild enthusiasm. Most technologies are over promised, more 
often than not simply to generate funds to continue the work, for funding is an integral part of scientific development; 
without it, only the most imaginative and revolutionary ideas make it beyond the embryonic stage. Hype is a natural 
handmaiden to over promise, and most technologies build rapidly to a peak of hype. Following this, there is almost always 
an overreaction to ideas that are not fully developed, and this inevitably leads to a crash of sorts, followed by a period of 
wallowing in the depths of cynicism. Many new technologies evolve to this point, and then fade away. The ones that 
survive do so because someone finds a good use (= true user benefit) for the basic ideas. What constitutes a "good use"? 
For example, there are now many "good uses" in real systems for the complex numbers, as we have seen in Examples 2 
and 3, but not many mathematicians thought so when Wessel, Argand, Hamilton, and Gauss made imaginary numbers 
sensible from a geometric point of view in the later 1800s. And in the context of fuzzy models, of course, "good use" 
corresponds to the plethora of products alluded to above. Interest in fuzzy systems in academia, industry, and government 
is also manifested by the rapid growth of national and international conferences. As noted above, successful applications 
of fuzzy models have gained great visibility through commercial applications in Japan. MITI in Japan started LIFE 
(Laboratory of Industrial Fuzzy Engineering) in 1988 with an annual budget of about $ 24 000 000 (U.S. dollars) for 
seven years.  […] 
 

Fuzzy Sets Theory 
(Edited from J.-S.R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Ch. 2, Prentice Hall, 1997) 

 
Let X be a space of objects and x be a generic element of X. A classical set A, A ⊆ X, is defined as a collection of 

elements or objects x ∈ X, such that each element (x) can either belong or not to the set A. By defining a characteristic 
(or membership) function for each element x in X, we can represent a classical set A by a set of ordered pairs (x,0) or 
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Figure 5. (a) B = "desirable number of children in a 
family"; (b) C = "about 50 years old" 

(x,1), which indicates x ∉ A or x ∈ A, respectively. Unlike 
the aforementioned conventional set, a fuzzy set expresses 
the degree to which an element belongs to a set. Hence the 
membership function of a fuzzy set is allowed to have 
values between 0 and 1, which denote the degree of 
membership of an element in the given set.  
Definition 1. Fuzzy sets and membership functions. If X is 
a collection of objects denoted generically by x, then a 
fuzzy set A in X is defined as a set of ordered pairs A = 
{( x,µA(x)) | x ∈ X }, where, µA(x) is called the membership 
function (or MF for short) for the fuzzy set A. The MF 

maps each element of X to a membership grade (or membership value) between 0 and 1 (included).  
Obviously, the definition of a fuzzy set is a simple extension of the definition of a classical (crisp) set in which the 

characteristic function is permitted to have any values between 0 and 1. If the value of the membership function is 
restricted to either 0 or 1, then A is reduced to a classical set. For clarity, we shall also refer to classical sets as ordinary 
sets, crisp sets, non-fuzzy sets, or just sets. Usually X is referred to as the universe of discourse, or simply the universe, 
and it may consist of discrete (ordered or non-ordered) objects or it can be a continuous space. This can be clarified by the 
following examples. 
Example 1. Fuzzy sets with a discrete non-ordered universe. Let X = {San Francisco, Boston, Los Angeles} be the set of 
cities one may choose to live in. The fuzzy set A = "desirable city to live in" may be described as follows: A = {(San 
Francisco, 0.9), (Boston, 0.8), (Los Angeles, 0.6)}. Apparently the universe of discourse X is discrete and it contains non-
ordered objects − in this case, three big cities in the United States. As one can see, the foregoing membership grades listed 
above are quite subjective; anyone can come up with three different but legitimate values to reflect his or her preference. 
Example 2. Fuzzy sets with a discrete ordered universe. Let X = {0, 1, 2, 3, 4, 5, 6} be the set of numbers of children a 
family may choose to have. Then the fuzzy set B = "desirable number of children in a family" may be described as 
follows:  B = {(0, 0.1), (1, 0.3), (2, 0.7), (3, 1), (4, 0.7), (5, 0.3), (6, 0.1)}. Here we have a discrete ordered universe X; the 
MF for the fuzzy set B is shown in Fig. 5(a). Again, the membership grades of this fuzzy set are obviously subjective 
measures.  
Example 3. Fuzzy sets with a continuous universe. Let X = ℜ+ be the set of possible ages for human beings. Then the 
fuzzy set C = "about 50 years old" may be expressed as C = {(x,µC(x)) | x ∈ X }, where 

This is illustrated in Figure 5(b). From the preceding examples, it is obvious that the construction of a fuzzy set depends 
on two things: the identification of a suitable universe of discourse and the specification of an appropriate membership 
function. The specification of membership functions is subjective, which means that the membership functions specified 
for the same concept by different persons may vary considerably. This subjectivity comes from individual differences in 
perceiving or expressing abstract concepts and has little to do with randomness. Therefore, the subjectivity and non-
randomness of fuzzy sets is the, primary difference between the study of fuzzy sets and probability theory, which deals 
with objective treatment of random phenomena.  

In practice, when the universe of discourse X is a continuous space, we usually partition it into several fuzzy sets 
whose MFs cover X in a more or less uniform manner. These fuzzy sets, which usually carry names that conform to 
adjectives appearing in our daily linguistic usage, such as "large," "medium," or "small," are called linguistic values or 
linguistic labels. Thus, the universe of discourse X is often called the linguistic variable. An example on this follows. 
Example 4. Linguistic variables and 
linguistic values. Suppose that X = "age." 
Then we can define fuzzy sets "young," 
"middle aged," and "old" that are 
characterized by MFs. Just as a variable can 
assume various values, a linguistic variable 
"age" can assume different linguistic values, 
such as "young," "middle aged," and "old" 
in this case. If "age" assumes the value of 
"young," then we have the expression "age 
is young," and so forth for the other values. 
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An example of MFs for these linguistic values are displayed in Fig. 6, where the universe of discourse X is totally covered 
by the MFs and the transition from one MF to another is smooth and gradual. Lets now define some nomenclature used in 
the literature.  
 
Definition 2. Support. The support of a fuzzy set A is the set of all points x in X such that µA(x) > 0. 
Definition 3. Core. The core of a fuzzy set A is the set of all points x in X such that µA(x) = 1. 
Definition 4. Normality. A fuzzy set A is normal if its core is nonempty. In other words, we can always find at least a 
point x ∈ X such that µA(x) = 1. 
Definition 5. Crossover points. A crossover point of a fuzzy set A is a point x ∈ X at which µA(x) = 0.5. 
Definition 6. Fuzzy singleton. A fuzzy set whose support is a single point in X with µA(x) = 1 is called a fuzzy singleton.  
Definition 7. α-cut, strong α-cut. The α-cut or α-level set of a fuzzy set A is a crisp set defined by Aα = {x | µA(x) ≥ α}. 
Strong α-cut or strong α-level set are defined similarly: A'α = {x | µA(x) > α}.  
Using this notation, we can express the support and core of a fuzzy set A as support(A) = A'0 and core(A) = Al. 
Definition 8. Convexity. A fuzzy set A is convex if and only if for any x1, x2 ∈ X and any λ ∈ [0,1], µA(λx1 + (1-λ)x2) ≥ 
min{µA(x1), µA(x2)}. Alternatively, A is convex if all its α-level sets axe convex. Note that the definition of convexity of a 
fuzzy set is not as strict as the common definition of convexity of a function. 
Definition 9. Fuzzy numbers. A fuzzy number A is a fuzzy set in the real line that satisfies the conditions for normality 
and convexity. Most fuzzy sets used in the literature satisfy the conditions for normality and convexity, so fuzzy numbers 
axe the most basic type of fuzzy sets.  

Union, intersection, and complement are the most basic operations on classical sets. On the basis of these three 
operations, a number of identities can be established. Corresponding to the ordinary set operations of union, intersection, 
and complement, fuzzy sets have similar operations, which were initially defined in Zadeh's seminal paper [1]. Before 
introducing these three fuzzy set operations, first we shall define the notion of containment, which plays a central role in 
both ordinary and fuzzy sets. This definition of containment is, of course, a natural extension of the case for ordinary sets.  
Definition 10. Containment or subset. Fuzzy set A is contained in fuzzy set B (or, equivalently, A is a subset of B, or A is 
smaller than or equal to B, A ⊆ B) if and only if µA(x) ≤ µB(x) for all x. 
Definition 11. Union (disjunction). The union of two fuzzy sets A and B is a fuzzy set C, written as C = A ∪ B or C = A 
OR B, whose MF is related to those of A and B by µC(x) = max(µA(x), µB(x)). 
Definition 12. Intersection (conjunction). The intersection of two fuzzy sets A and B is a fuzzy set C, written as C = A ∩ 
B or C = A AND B, whose MF is related to those of A and B by µC(x) = min(µA(x), µB(x)). 
Definition 13. Complement (negation). The complement of fuzzy set A, denoted byA or NOT A, is defined as µA(x) = 1 
– µA(x). 

Note that the operations introduced in the last three definitions (11 to 13) perform exactly as the corresponding 
operations for ordinary sets if the values of the membership functions are restricted to either 0 or 1. However, it is 
understood that these functions are not the only possible generalizations of the crisp set operations. For each of the 
aforementioned three set operations, several different classes of functions with desirable properties have been proposed 
subsequently in the literature (e.g. algebraic sum for union and product for intersection). In general, union and 
intersection of two fuzzy sets can be defined through T-conorm (or S-norm) and T-norm operators respectively. These two 
operators are functions S,T : [0,1]×[0,1] → [0,1] satisfying some convenient boundary, monotonicity, commutativity and 
associativity properties. As pointed out by Zadeh [1], a more intuitive but equivalent definition of union is the, “smallest” 
fuzzy set containing both A and B.  Alternatively, if D is any fuzzy set that contains both A and B, then it also contains A 
∪ B. Analogously, the intersection of A and B is the "largest" fuzzy set which is contained in both A and B. 
 
(Following is edited from J.M. Mendel, "Fuzzy Logic Systems for Engineering: A Tutorial," Proc. of IEEE, 83(3), 1995.) 

 
The two fundamental (Aristotelian) laws of crisp set theory are: 1) Law of Contradiction: A ∪A = X (i.e., a set and its 

complement must comprise the universe of discourse), and 2) Law of Excluded Middle: A ∩A = ∅ (i.e., an object can 
either be in its set or its complement; it cannot simultaneously be in both). It can be easily seen that for every fuzzy set 
that is non-crisp (i.e., whose membership function does not only assume values 0 and 1) both laws are broken (i.e., for 
fuzzy sets A ∪A ≠ X and A ∩A ≠ ∅). Indeed ∀x ∈ A such that µA(x) = α, 0 < α < 1: µ A ∪A (x) = max{α,1-α} ≠ 1 and µ 

A ∩A (x) = min{α,1-α} ≠ 0. For example, we can see from Fig. 6 how a 30 year old person is young with degree of 
membership 0.5 and not young with degree of membership 0.5. In fact, one of the ways to describe the difference between 
crisp set theory and fuzzy set theory is to explain that these two laws do not hold in fuzzy set theory. Consequently, any 
other mathematics that relies on crisp set theory, such as (frequency based) probability, must be different from fuzzy set 
theory. 

We will now introduce the concept of relations in both crisp and fuzzy sets; this will later help us in approaching 
fuzzy logic. A crisp relation represents the presence or absence of association, interaction or interconnectedness between 
the elements of two or more sets. Given two sets X and Y a relation R between X and Y is itself a set R(X,Y) subset of X × 
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Y. For example the ordering relation “less than” (<) is a relation in ℜ2 defined as LT(ℜ,ℜ) = {(x,y) | x < y}. The point 
(1,123) belongs to LT(ℜ,ℜ) while obviously (123,1) does not. (Note: by X × Y we indicate the Cartesian product of sets X 
and Y, that is the set of ordered couples with values from X and Y respectively, i.e., X × Y = {(x,y) | x∈X and y∈Y}.) 
Definition 14. Fuzzy relation. A fuzzy relation represents a degree of presence or absence of association, interaction or 
interconnectedness between the elements of two or more sets. Some examples of (binary) fuzzy relations are: x is much 
larger than y, y is very close to x, z is much greener than y. Let X and Y be two universes of discourse. A fuzzy relation 
R(X,Y) is a fuzzy set in the product space X × Y, i.e., it is a fuzzy subset of X × Y, and is characterized by the membership 
function µR(x,y), i.e., R(X,Y) = {((x,y),µR(x,y)) | (x,y) ∈ X × Y}.  

The difference between a fuzzy relation and a crisp relation is that for the former any membership value in [0,1] is 
allowed while for the latter only 0 and 1 memberships are. This is why a fuzzy relation is expressing not only the 
interconnection between the elements of two or more sets (e.g., as a crisp relation does) but also the degree or extent of 
this association. Because fuzzy relations are fuzzy sets in product space, set theoretic operations can be defined for them 
using definitions 11 through 13.  

Next, we consider the composition of crisp relations from different product spaces that share a common set, namely 
P(X,Y) and Q(Y,Z). The composition of these two relations is denoted by R(X,Z) = P(X,Y) Ì Q(Y,Z) and is defined as a 
subset R(X,Z) of X × Z such that (x,z) ∈ R(X,Z) if and only if there exists at least one y ∈ Y such that (x,y) ∈ P(X,Y) and 
(y,z) ∈ Q(Y,Z). This can be expressed in terms of characteristic functions through either the max-min or the max-product 
compositions respectively defined as 

The composition of fuzzy relations from different product spaces that share a common set is defined analogously to the 
crisp composition, except that in the fuzzy case the sets are fuzzy.  
Definition 15. Composition of fuzzy relations. Given two relations P(X,Y) and Q(Y,Z) and their associated membership 
functions µP(x,y) and µQ(y,z), the composition of these two relations is denoted by R(X,Z) = P(X,Y) Ì Q(Y,Z) (or simply R 

= P Ì Q) and is defined as a subset R(X,Z) of X × Z defined by the membership function 
Motivation for using the T-norm operator (⊗) comes from the crisp max-min and max-product compositions, because 
both the min and the product are T-norms. This is also sometimes referred to as sup-star composition due to an alternative 
symbol for T-norm (e.g., ★). Although it is permissible to use other T-norms, the most commonly used sup-star 
compositions are the sup-min and sup-product. Observe that, unlike the case of crisp compositions, for which exactly the 
same results are obtained using either the max-min or the max-product composition, the same results are not obtained in 
the case of fuzzy compositions. This is a major difference between fuzzy composition and crisp composition. 

Suppose fuzzy relation P is just a fuzzy set, so that µP(x,y) just becomes µP(x), e.g., “x is medium large and z is smaller 
than y.” Then Y = X and the membership function for the composition of P and Q becomes 

Note that now this is only a function of the variable z. This equation will be useful in later developments of fuzzy 
reasoning. 
 

Fuzzy Logic 
 

It is well established that prepositional logic is isomorphic to set theory under the appropriate correspondence between 
components of these two mathematical systems. Furthermore, both of these systems are isomorphic to a Boolean algebra, 
which is a mathematical system, defined by abstract entities and their axiomatic properties. The isomorphism between 
Boolean algebra, set theory, and propositional logic guarantees that every theorem in any one of these theories has a 
counterpart in each of the other two theories. These isomorphisms allow us, in effect, to cover all these theories by 
developing only one of them. Consequently, we will not spend a lot of time reviewing crisp logic; but we must spend some 
time on it, especially on the concept of implication, in order to reach the comparable concept in fuzzy logic.  

Rules are a form of propositions. A proposition is an ordinary statement involving terms which have been defined, 
e.g., "The damping ratio is low." Consequently, we could have the following rule: "IF the damping ratio is low, THEN the 
system's impulse response oscillates a long time before it dies out." In traditional propositional logic, a proposition must 
be meaningful to call it "true" or "false," whether or not we know which of these terms properly applies. Logical 
reasoning is the process of combining given propositions into other propositions, and then doing this over and over again. 
Propositions can be combined in many ways, all of which are derived from three fundamental operations: conjunction 
(denoted p∧q), where we assert the simultaneous truth of two separate propositions p and q; disjunction (p∨q), where we 
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assert the truth of either or both of two separate propositions; and 
implication (p→q) which usually takes the form of an IF-THEN rule. 
The IF part of an implication is called the antecedent, whereas the 
THEN part is called the consequent. In addition to generating 
propositions using conjunction, disjunction or implication, a new 
proposition can be obtained from a given one by prefixing the clause 
“it is false that …”. This is the operation of negation (~p). 
Additionally, p↔q is the equivalence relation; it means that p and q 

are both true or false. 
In traditional propositional logic we combine unrelated propositions into an implication, and we do not assume any 

cause or effect relation to exist. We will see later that this last statement causes serious problems when we try to apply 
traditional propositional logic to engineering applications, where cause and effect rule (i.e., a (causal) system does not 
respond until an input is applied to it). In traditional propositional logic an implication is said to be true if one of the 
following holds (see also Table 1): 1) (antecedent is true, consequent is true),  2) (antecedent is false, consequent is false),  
3) (antecedent is false, consequent is true); the implication is called false when 4) (antecedent is true, consequent is false). 
Situation 1) is the familiar one of common experience. Situation 2) is also reasonable, for if we start from a false 
assumption we expect to reach a false conclusion, however, intuition is not always reliable. We may reason correctly from 
a false antecedent to a true consequent (e.g., IF 1 = 2 is false, but, adding 2 = 1 to this false statement, lets us correctly 
conclude that 3 = 3); hence, a false antecedent can lead to a consequent which is either true or false, and thus both 
situations 2) and 3) are allowed in traditional propositional logic. Finally, situation 4) is in accord with our intuition, for 
an implication is clearly false if a true antecedent leads to a false consequent. A logical structure is constructed by 
applying the above four operations to propositions. The objective of a logical structure is to determine the truth or 
falsehood of all propositions which can be stated in the terminology of this structure. A truth table is very convenient for 
showing relationships between several propositions. The fundamental truth tables for conjunction, disjunction, 
implication, equivalence and negation are collected together in Table 1, in which symbol T means that the corresponding 
proposition is true, and symbol F that it is false. The fundamental axioms of traditional propositional logic are: 1) every 
proposition is either true or false, but not both true and false, 2) the expressions given by defined terms are propositions, 
and, 3) the truth table (in Table 1) for conjunction, disjunction, implication, equivalence, and negation. Using truth tables, 
we can derive many interpretations of the preceding operations and can also prove relationships about them. 

A tautology is a proposition formed by combining other propositions, which is true regardless of the truth or 
falsehood of the forming propositions. The most important tautologies for our work are: (p → q) ↔ ~[p ∧ (~q)] ↔ (~p) ∨ 
q. These tautologies can be verified by substituting all the possible combinations for p and q and verifying how the 
equivalence always holds true. The importance of these tautologies is that they let us express the membership function for 
p → q in terms of membership functions of either propositions p and ~q or ~p and q. Thus giving us 

Note that instead of min and max we could have used product and algebraic sum for intersection and union respectively. 
These two equations can be verified by substituting 1 for true and 0 for false.  

In traditional propositional logic there are two very important inference rules, Modus Ponens and Modus Tollens. 
Modus Ponens: Premise 1: "x is A"; Premise 2: "IF x is A THEN y is B", Consequence: "y is B." Modus Ponens is 
associated with the implication "A implies B." In terms of propositions p and q, Modus Ponens is expressed as : (p ∧ (p → 
q)) → q. Modus Tollens: Premise 1: "y is not B"; Premise 2: "IF x is A THEN y is B"; Consequence: "x is not A." In terms 
of propositions p and q, Modus Tollens is expressed as ((~q) ∧ (p → q)) → (~p). Whereas Modus Ponens plays a central 
role in engineering applications of logic, due in large part to cause and effect, Modus Tollens does not seem to have yet 
played much of a role. 

Fuzzy logic begins by borrowing notions from crisp logic, just as fuzzy set theory; however, as we shall demonstrate 
below, doing this is inadequate for engineering applications of fuzzy logic, because, in engineering, cause and effect is the 
cornerstone of modeling, whereas in traditional propositional logic it is not. Ultimately, this will cause us to define 
“engineering” implication operators. Before doing this, let us develop an understanding of why the traditional approach 
fails us in engineering. As in our extension of crisp set theory to fuzzy set theory, our extension of crisp logic to fuzzy 
logic is made by replacing the bivalent membership functions of crisp logic with fuzzy membership functions. That is all 
there is to it; hence, the IF-THEN statement "IF x is A, THEN y is B," where x ∈ X and y ∈ Y, has a membership function 
µA→B(x,y) ∈ [0,1]. Note that µA→B(x,y) measures the degree of truth of the implication relation between x and y. This 
membership function can be defined as for the crisp case above. In fuzzy logic, Modus Ponens is extended to Generalized 
Modus Ponens: Premise 1: “x is A*”; Premise 2: “IF x is A THEN y is B”; Consequence: “y is B*.” Compare Modus 

p q p∧q p∨q p→q p↔q ~p 
T T T T T T F 
T F F T F F F 
F T F T T F T 
F F F F T T T 

Table 1. Truth table for five operations that are 
frequently applied to propositions 
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Ponens and Generalized Modus Ponens to see their subtle differences, namely, in the latter, fuzzy set A* is not the 
necessarily the same as rule antecedent fuzzy set A, and fuzzy set B* is not necessarily the same as rule consequent B. 
Example 4: Consider the rule “IF a man is short, THEN he will not make a very good professional basketball player.” 
Here fuzzy set A is short man and fuzzy set B is not a very good professional basketball player. We are now given 
Premise 1, as “This man is under five feet tall.” Here A* is the fuzzy set man under five feet tall. Clearly A and A* are 
different but similar. We now draw the following consequence: "He will make a poor professional basketball player." Here 
B* is the fuzzy set poor professional basketball player, and it is different from B, although they are indeed similar. Note 
how Premise 1 could have been “This man is five feet tall” (this would correspond to a fuzzy singleton) and we would 
have reached the same conclusion. 

We see that in crisp logic a rule will be fired only if the first premise is exactly the same as the antecedent of the rule, 
and, the result of such rule firing is the rule’s actual consequent. In fuzzy logic, on the other hand, a rule is fired so long 
as there is a nonzero degree of similarity between the first premise and the antecedent of the rule, and the result of such 
rule firing is a consequent that has nonzero degree of similarity to the rule’ consequent. 
Generalized Modus Ponens is a fuzzy composition where the first fuzzy relation is merely the fuzzy set, A*. 
Consequently, µB*(y) is obtained from the sup-star composition as 

Lets now think at an application of this approach. Given an observation x1 we want to determine what is the correct 
action y1 corresponding to the observation. This observation needs to correspond to the first premise in generalized modus 
ponens, thus it needs to be a fuzzy set (e.g., A*). But it really is a crisp number, thus it needs to first be transformed into a 
fuzzy set (fuzzification) the rule (or rules) is then processed thus producing an output fuzzy set (B*) that needs to be 
transformed into a crisp number (defuzzification) to be useful in the real world. The operations that we just described 
correspond to the mode of functioning of a fuzzy logic system (see also Fig. 3 and the related discussion). Thus in a FLS, 
an input is fuzzified, then processed by a rule base through an inference process and finally defuzzified to produce a 
usable (crisp) output. There are several types of fuzzifiers and defuzzifiers and their discussion is outside the scope of this 
introduction. One of the most popular types of fuzzifiers is the singleton fuzzifier. In this fuzzification scheme an 
observation x1 is transformed into a fuzzy set being a singleton with support {x1}. Thus, with the nomenclature introduced 
above µA*(x) is zero everywhere besides at x = x1. Consequently µB*(y) becomes        

A graphical interpretation of this equation using a triangular membership function for µB(y)  (a common choice in FLSs) 
reveals a disturbing result for an engineering application. It tells us that, given a specific input x = x1, the result of firing 
a specific rule, whose consequent is associated with a specific fuzzy set of finite support (the base of the triangle), is a 
fuzzy set whose support is infinite. (Please try this construction yourself, we can also discuss it further in class.) Clearly, 
this does not make much sense from an engineering perspective, where cause (e.g., system input) shoud lead to effect 
(e.g., system output), and noncause should not lead to anything. Any other choice for µA→B(x,y) (i.e., among the ones 
illustrated above) leads us to similar results. Mamdani [4] seems to have been the first one to recognize the problem we 
have just demonstrated, although he does not explain it the way we have. He chose to work with a minimum implication 
defined as µA→B(x,y) = min{µA(x), µB(y)}. His reason for choosing this definition do not seem to be based on cause and 
effect, but, instead on simplicity of computation. Later, Larsen [5] proposed a product implication defined as µA→B(x,y) = 
µA(x) µB(y). Again, the reason for this choice was simplicity of computation rather than cause and effect. Today, 
minimum and product inferences are the most widely used inferences in the engineering applications of fuzzy logic; but, 
what do they have to do with traditional propositional logic? It can be easily seen that neither minimum inference nor 
product inference agree with the accepted propositional logic definition of implication, given in Table 1. Hence, minimum 
and product inferences have nothing to do with traditional propositional logic. Interestingly enough minimum and 
product inferences preserve cause and effect, i.e. the implication is fired only when the antecedent and the consequent are 
both true. Thus, they are sometimes collectively referred to as engineering implications.  

A very interesting development of FLSs is that they can be regarded as a parametric nonlinear mapping that was 
proven to be a universal approximator. Thus, an ongoing field of research is that of learning methods for FLSs treated as 
black boxes [6]. The advantages offered by FLSs are twofold: 1) they can be better initialized from human experts with 
rules in linguistic form (as compared to other black box models); 2) the final result of the learning process is easily 
interpreted and sometimes can reveal some hidden system characteristics, thus maybe showing a hope for the very longed 
and real artificial intelligence where a computer system could actually teach something to a human. Even though FLSs 
are definitely the most popular outcome of fuzzy sets and fuzzy logic, a lot of other research and application fields sprung 
out of them. Among some of them there is fuzzy optimization and fuzzy linear programming, fuzzy preference modeling 
and fuzzy multi attribute decision making, linguistic modeling and decision models (a survey on fuzzy sets in OR can be 
found in [7]). 
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